Our State-of-the-Art Lab Equipment

High-Performance Liquid Chromatograph

4 HPLCs

The HPLC is a master specialist in determining the identity and quantity of elements and molecules, such as the activity in an herb, the product of an enzymatic reaction, or any molecule which absorbs light or that can be made chromophore (able to absorb/transmit light). The HPLC is very specific in being able to absolutely determine what a substance is and exactly how much of it there is. HPLC works by automatically injecting a small volume of liquid sample into a column packed with particles 120 the thickness of a white sheet of paper. The liquid sample is forced through the column by powerful micropumps. The detector sends a digital signal to the computer, where specialized software is used to identify and determine the quantity of the separated components. We use it routinely to analyse the composition of compounds present in complex mixtures, such as water- and fat-soluble vitamins. We also use the HPLC to analyse a large variety of ingredient, for example astragalus, dandelion, and red clover. This is a typical liquid chromatogram of water-soluble vitamins; these are called chromatographic peaks, and each one represents a separated compound.  



UHPLCs

Ultra-High-Performance Liquid Chromatography

We’ve added 4 UHPLCs to our laboratory.
These extend our extensive testing capability.



PCR Cycler: DNA GMO Identification

Our laboratory has also added DNA extraction and analysis capability. With this capability we can identify if an ingredient contains any GMO DNA or proteins.


UPLC/MS (LC/MS-Triple quad)

Ultra-Performance Liquid Chromatography Mass Spectrometer – Dual detector

If the HPLC is the master specialist in identifying and quantifying, then the LC-MS/MS is the all-star. It is able to do everything the HPLC can do, only better and more precisely. It does this by using a very high-pressure micropump—15,000 psi—,combined with dual detector / photodiode array (PDA) and a more powerful mass spectrometer detector. It is used in cases where extreme sensitivity is needed. Currently, this is the most advanced and widest-application tool for analysis. It allows for the most precise measurements—in parts per trillion rather than billion or million… The LC-MS/MS is able to effectively analyse herbs and medicinal components. The LC/MS combines the advanced separation capabilities of an HPLC with the powerful analytical abilities of a mass spectrometer. A sample is injected into the UPLC system and separated into its various components. These components enter the MS through an “electro spray interface,” where very rapid ionization takes place. At this point, the mass spectra of the components can be used to pinpoint-analyse the sample. The main advantage of this system is that it generates fast, accurate, and extremely precise measurements by creating an electronic signature of a compound. We test many nutraceuticals with this instrument, such as glycosides in black cohosh, thujone in worm wood, and residual antibiotics in royal jelly.

GC-FID/MSs

Gas Chromatography–Flame Ionization Detector/Mass Spectrometrer

2 pcs GC-FID/MSs

The GC is used to analyse volatile molecules with a high melting point, such as fatty acids in fish oil. In addition, samples submitted to the GC do not need solvents or a “liquid mobile phase”; instead, samples are carried by an inert gas through the system. Hence, if we are testing for solvents, the instrument of choice is the GC-FID/MS; no steps are needed to factor out any solvents used to prepare the sample. GC-MS is precisely able to identify and determine the quantity of the molecules of interest, whereas GC-FID is only used to determine the quantity of molecules. Like LC-MS/MS, GC-MS is also able to create an electronic signature of a molecule. The complexity of running the test will dictate which instrument will be used. In a GC system, the vaporized sample is moved with a carrier gas through a specially coated capillary column. The column separates the components before entry into the detector; in our case, either the FID or MS, depending on the application. We also use the GC-FID system to determine the quantity of common fatty acids and essential oils present in oils such as tamanu, argan, and fish oil. This is a typical fatty acids chromatogram of an argan oil sample.

PCBs and pesticides are tested for through the GC-MS. As the samples pass through the ionization chamber, they are bombarded with a very high voltage of electricity that results in complete fragmentation (separation) of the individual compounds. The fragments are reconstructed as they move through a vacuum tube as per their mass-to-charge ratio. The given signal is recorded by the computer for analysis. The compounds are compared with a well-known library from the National Institute of Standards and Technology (NIST) or a certified reference standard material. The total ion chromatogram below represents a pesticides mixture.


Samples being tested for solvents pass through our headspace GC-FID. The FID incinerates the sample, giving an electrical signal for analysis. We use this setup to detect if there are solvents, such as 1,2-dichloroethane and 1,1,1-trichloroethane—which are known human carcinogens. These contaminants can be present in low-quality herbal extracts, and we have zero tolerance for them. The chromatogram below represents residual solvent.  

ICP-OES

Inductively Coupled Plasma–Optical Emission Spectroscopy

ICP specializes in analysing metals and minerals. With this device, we can effectively and precisely determine the identity and quantity of any metal present in a sample, be it iron, magnesium, lead, mercury, or boron. The process to test for these metals is much more straightforward than it would be on the HPLC or LC/MS. With an ICP-OES, a sample flows into a plasma torch, where it is incinerated into atomized particles. Electrons of the atomized sample go through different levels of energy and by doing so, the atoms emit light; that light is analysed for meaningful information. We use it to detect contamination by low-level trace metals—including mercury, arsenic, lead, and cadmium. These contaminants permeate the Earth’s crust and can be especially present in foodstuff grown in the ground or any items originating from the earth. Essentially, the only remnants of an atomized sample will be any residual metals, which we are then able to detect. This makes methods developed to test metals easier to run for on the ICP. Here is an ICP screenshot of the spectral view of cadmium.



Spectrophotometers

The spectrophotometer is a cost-effective tool that can be used to determine the quantity of samples which absorb or transmit light. Based on absorption or transmittance of light, a correlation can be made to determine the quantity of a substance. The identity of the sample will be determined through other instruments. A spectrophotometer is a device used to measure light intensity. NASA typically includes a spectrophotometer on their interplanetary landers such as the Spirit and Opportunity rovers. A small beam of light passes through the sample; some of the light is absorbed, but what passes through is detected and measured by the spectrophotometer. We are able to use this information to determine the quantity of a substance. Our spectrophotometer is used to determine some enzymatic activities, such as papain and bromelain, or anthocyanidin content in bilberry. Here is a screen shot of a spectrophotometer graph of a papain sample.


HPTLC

High-Precision Thin-Layer Chromatograph

The HPTLC is an effective tool to verify the fingerprint of identity of ingredients against a reference plate. We are able to confirm the profile of a plant thanks to this tool, and to ensure the right ingredient is being used. With an HPTLC, individual components of a mixture are separated on a thin glass-coated plate, which is then placed in a developing chamber. The TLC plate is placed under an ultraviolet lamp, and bands of the different components are visualized. Unlike a standard TLC, with an HPTLC many tasks are automated via robotics, eliminating uncertainty from samples being applied to plates by hand. We use the HPTLC to detect if products have been contaminated by mycotoxins, a dangerous class of toxins that can develop on plant matter in humid conditions. You can see an HPTLC plate below.


NIR

Near-Infrared Spectroscopy

NIR can be used to test a wide variety of substances; herbs and isolates such as amino acids. NIR can test almost anything, so long as we have a sample known to be that substance. With this device, we can guarantee the freshness of the plants we use in your product. NIR works by comparing the fingerprint of a substance with an avage of fingerprints of samples known to be that substance. Those fingerprints form a 3D reference model of what is acceptable. This is important, as even grown under similar conditions, the same plant will not grow in an identical fashion. NIR allows us to identify herbal products’ total quality. We ensure that only those samples that meet our strict criteria for freshness and quality are able to pass. We only include the highest-quality herbals in the reference models we create for the NIR. The NIR gives a reliable identification of a sample by comparing its spectra to the spectra of a sample of known characteristics. NIR analyses the transmissive properties of specific wavelengths of light in the sample being measured. Here is a representation of spectral information into a three-dimensional image.


Microscope

The venerable microscope is still a staple in any laboratory. Of course, we use a modern light microscope; this style of microscope utilizes a focused beam of light that is converged by the condenser lens onto a specific point on the specimen. We use it to examine the broken cell status of Chlorella samples. Here is an example of a broken cell wall in a Chlorella sample; broken cell walls make for easier digestion and absorbability.


NexION® 2000 ICP-MS

The NexION 2000 Inductively Coupled Plasma Mass Spectrometer (ICP-MS) is very versatile. It features an array of unique technologies that combine to deliver the highest performance no matter the analytical challenge. Its versatility makes it easy to handle any sample matrix and address any interferences; It accurately measures sub-ppt levels of critical trace elements such as Na, K, Ca, and Fe. It is coupled with a prepFAST MC™ which is a fully automated, low pressure chromatography system that isolates elements of interest from the sample matrix and collects multiple discrete eluent fractions for precise isotopic analysis. This allows for example the separation of organic arsenic from inorganic arsenic.